
www.astesj.com 303

TETRA™ Techniques to Assess and Manage the Software Technical Debt

Boris Kontsevoi1,*, Sergei Terekhov2

1Boris Kontsevoi, Intetics Inc, President & CEO, Naples, 34108, USA,

2Sergei Terekhov, Intetics Inc, Director of Quality Assurance, Minsk, 220004, Belarus

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 07 May, 2021
Accepted: 15 June, 2021
Online: 19 October, 2021

 The paper examines the company’s proprietary means for determining the quality of a
software product and measuring its technical debt. The paper's authors explain how a
software product's quality is directly correlated with the amount of varying technical debts
that the end-users receive. All debts can be paid, and technical debt is no exception: one can
use various parameters, techniques, and dimensions to effectively measure and optimize the
quality of a software product. The authors share information about the company’s
proprietary method to technical debt management, which is done via the Technical dEbT
Reduction plAtform, otherwise known as TETRA™. They give details about the assessment's
major dimensions, tools, and measurement parameters.

Keywords:
Architecture
Bug
Business Logic
Data Quality
Fixing
Metrics
Measurements
Open Source
Performance Quality
Quality Assurance
Security
Software
Source Code
Technical Debt
Test
Testing
Usability

1. Introduction

Whether you've been a part of the software development
industry for decades or just a few years, you've probably had to
explain software quality to your clients. Everybody talks about
software quality, but it's understood differently from person to
person. Some define quality as the level of client satisfaction,
while others say it’s just about meeting the customer's
requirements. And in the tech world, it's more about the software
being free of any defects. We find the latter to be more realistic;
however, it can raise even more concerns. At Intetics, we decided
to clear up any understandings by carrying out intensive research:
we aimed to determine what the quality of a software product is
and how it can be managed efficiently. Throughout our
investigations, we discovered that a software product's quality is
directly correlated to the product's amount of varying technical
debts that are passed on to end-users.

Best practices within the software development industry state
that technical debt is any code added now that will take more work
to fix later on. This kind of code is usually added to achieve rapid
gains. The source code is one of the most important aspects of
software. After all, the higher the number of problems within the
source code, the more redevelopment is needed [1]. That's how
the software development industry understands technical debt –
and we agree. However, after dealing with technical debt for many
years, we started to think about it differently. After thorough
examination, we came to the conclusion that technical debt is “a
combined product non-compliance with technical guidelines and
business objectives that negatively impact business results.”

Technical debt can be further divided into three categories:
intentional, unavoidable, and unintentional.

ASTESJ
ISSN: 2415-6698

*Corresponding Author: Boris Kontsevoi, boris@intetics.com

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 303-309 (2021)

www.astesj.com

https://dx.doi.org/10.25046/aj060534

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060534

B. Kontsevoi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 303-309 (2021)

www.astesj.com 304

• Intentional tech debt: As a business strategy, this kind of
debt is knowingly taken on. If intentional debt is kept at bay,
it’s acceptable.

• Unavoidable tech debt: This kind compiles as a result of
external factors, such as when you need to adapt your
software after a third-party system upgrade.

• Unintentional tech debt: It stems from negligence. It might
happen if several developers are simultaneously working on
one solution and one error is layered over another.

There are also various kinds of tech debt types based on the
debt’s cause. Some causes include people debt, automation test
debt, documentation debt, and requirement debt, among others
[2].

A growing volume of technical debt in the project is usually a
consequence of cutting corners during the project's early stages. It
can stem from minor defects in the codebase, environment setup,
documentation, or chosen third-party software. And as the impact
of these early errors grows, refactoring is necessary – likely
rewritten or adjusted to ease further development and
maintenance. The development team has to work with tech debt
while the software is already developed, released, and being
actively used. And if the tech debt is not addressed in time, it will
gradually build up, threatening to take down the whole software
product.

The costs of technical debt can be quite significant; the cost of
technical debt for an average application with 300,000 lines is just
over $1 million, according to a report from CAST software.
What's more, the repercussions can go beyond high costs. Take,
for instance, an NHS glitch in 2018 – in this case, over 10,000
patients were at risk of being given the wrong medication.

For any software product, it is natural to accumulate some
amount of technical debt in the development process. Therefore,
it makes academic and practical sense to manage tech debt.
Various reviewed sources suggest that technical debt should be
managed within the Agile Triangle, where there are three different
dimensions - budget, time, and scope [3] - conflicting since it is
not feasible to develop high-quality software with a low budget in
a short time. So, as shown in Figure 1, if we are focused on one
corner, we are going to weaken the other two.

Figure 1: Agile Triangle

ª Agile Triangle figure is taken from source [3].

But there are also more specific approaches that highlight the
following steps:

• Identifying;
• Measuring;
• Prioritizing;
• Preventing;
• Monitoring;
• Repaying;
• Representing/Documenting;
• Communicating [4].

However, there is no commonly accepted theory of technical
debt identification. Yet, technical debt is present in any real
project – whether or not the developers recognize it as its own
entity. That had encouraged us to propose our own different
model.

While developing the model, we spent thousands of hours
investigating and defining crucial aspects of software product
quality that allow us to get a better perspective and measurement
of technical debt. We used these dimensions to form the
foundation of our platform for software quality assessment:
TETRA™ (Technical dEbT Reduction plAtform). And why did
we name it TETRA™? Technical debt is akin to tiny TETRA™
fish with thousands of species. That might be like small and
insignificant at first glance trade-offs. Even though these “locally
beautiful” quick solutions are easy to implement, they aren't the
ideal solution overall. As technical debt compiles, you'll have to
pay “interest” – in other words, more challenging maintainability,
a less enjoyable user experience, worse productivity across your
development team, and increased costs overall. We cram all those
fish into one fishbowl: the TETRA™ platform. So, how do we
decide what matters in software products? Is it possible to assess
both the business and technical sides?

We measure and assess both sides using a specific set of tools
and techniques, chosen based on original research from Intetics,
best practice analysis, and expertise gained throughout multiple
projects. The results enable us to calculate a software product's
overall technical debt and its specific parameters. To get the big
picture, we use eight dimensions to assess the product; each
dimension is judged on a five-point scale. This enables uniform
results and allows summary assessments to be obtained – for the
product itself and for each dimension. Ranges of values were set
for each metric – experimental and directly calculated, which
acted as a scoring system. The final product quality assessment
calculation was done via a weighted parameters system. The
parameters determined the roles that each dimension would play
in the overall score.

The final assessment is given within a table containing
numbers and indices for each metric. The most advantageous part
of using the TETRA™ methodology is that indices are
introduced, rather than exact numbers. Thus, further investigation
can be carried out based on the analysis of the TETRA™ Index,
Metric Index, and Dimension Index.

Every value was given a letter score and color. The highest
letter grade is A, which means that the parameter’s component
had no technical debt. The lowest, E, flagged the presence of
critical problems that must be rectified before the product is
worked on further.

http://www.astesj.com/

B. Kontsevoi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 303-309 (2021)

www.astesj.com 305

An example of the assessment is shown in Figure 2. To see the
big picture, we assess the product based on the following eight
dimensions.

Figure 2: Example of TETRA™ assessment report.

ª Note. Own development.

2. TETRA™ Dimensions

2.1 Dimension 1

Source code quality includes not only the completeness and
correctness of the required functionality's implementation but also
the ease of support and its modification [5]. It is evaluated by
these parameters:

• Cyclomatic complexity of the code is a metric on which the
complexity of the code maintenance directly depends and is
calculated as the number of independent paths in the code.

• Duplications is one of the main characteristics that reflects
how easy it will be in the future (or present) to make changes
to the code. The fewer duplicates there are, the easier it will
be to live with this code.

• The code coverage level is read as the ratio of the number of
code points covered by the unit tests to the number of all
existing ones.

• Rules compliance is the set of rules for compliance and
conventions that verify the basic design principles for source
code that's shared by the development team.

• Maintainability index is a software metric that measures
how it`s easy to maintain the source code.

Figure 3: Source code quality assessment summary

Figure 3 shows the Summary Source Code Assessment results
where the most pressing issues are related to the unit test coverage
and critical rules compliance violations.

2.2 Dimension 2

Usability, UI & Documentation covers the assessment of a
software product's usability, UI, and documentation, as the name
suggests. This process includes a checklist and expert assessment,
which address learnability, memorability, likeability, error
tolerability, and efficiency metrics [6]. In order to give an accurate
assessment, we use Usabilla, Browser Shots, W3C Markup
Validation Service, and other tools. A usability assessment
example is shown in Figure 4, where you can see that the usability
quality level is good.

Figure 4: Usability assessment summary.

2.3 Dimension 3

Security delves into product vulnerabilities related to BID,
CERT, OSVDB, CVE, CWE, and OWASP [7]. We use automated
and manual approaches within the security assessment, using tools
like OWASP ZAP, Burp Suite, and Nessus [8, 9]. An example of
the security assessment is shown in Figure 5; 8 vulnerabilities were
found there, giving the software a medium security quality level.

Figure 5: Security assessment summary

Figure 6: Performance assessment summary

2.4 Dimension 4

Performance assessment is the evaluation of whether the
product meets the customer's requirements. We perform the
assessment through load testing and by simulating the activity of
virtual users. We use tools like LoadUI Pro, WebLoad, JMeter,
and LoadRunner to assess certain performance parameters,
including peak and average response times, concurrent users, and
a separate set of server-state assessment parameters. An example

http://www.astesj.com/

B. Kontsevoi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 303-309 (2021)

www.astesj.com 306

of the performance assessment is shown in Figure 6. The most
impact on the final evaluation was made by the fallen virtual
users.

2.5 Dimension 5

Business logic assessment determines whether software
aligns with necessary business processes. This kind of assessment
considers feedback from various focus groups, including
customers, end-users, community, management, etc. The business
logic assessment relies on six main metrics: data safety, project
workflow quality, effectiveness, simplicity, business rules and
policy, and competitiveness. An example of the business logic
assessment is shown in Figure 7.

Figure 7: Business logic assessment summary.

2.6 Dimension 6

Architecture quality assessment contains an expert's
conclusion regarding the data model and core structure of the
software. During the assessment's administration, we analyze
services, layers, exception handling, design patterns, infrastructure
and recycling components, and more [10, 11].

Figure 8: Architecture assessment summary.

2.7 Dimension 7

Data quality encompasses a product's resistance to bad data,
how it handles exceptions, and its bad data preventative measures.
We base the assessment on metrics like completeness, timeliness,
validity, currency, accuracy, consistency, and accessibility. To
ensure the assessment's accuracy, we use manual testing and the

Talend Open Studio. An example of the data quality assessment is
shown in Figure 9. In this dimension, both metrics were assessed
at the medium level.

Figure 9: Data quality assessment summary.

2.8 Dimension 8

Open-source code use assessments find any open-source
components contained in the software product. We included this
dimension to pinpoint any operational, legal, security, or copyright
issues that could occur from using open-source components. Inside
the report, we give a list of all copyrights, open-source code, and
licenses used in the software product. Furthermore, we analyze the
software's open-source version. The assessment is done with Black
Duck, Palamida, and other tools. See Figure 10 for an example of
an assessment of open-source code. The biggest problems were
caused by the inclusion of unlicensed software.

Figure 10: Open source code use assessment summary.

By using this method of analyzing and measuring technical
debt, we create the final report that describes each weakness and
determines the product's quality.

Because these dimensions significantly impact business
needs, they must be communicated to stakeholders. Each
component can be checked independently, and some might not be
applicable to certain products. Separating technical debt
dimensions necessitates manual action and review from a
personal expert to be factored into the final scoring. We consider
this to be less of a problem than not estimating a software
product's technical debt.

3. Advantages of TETRA™

Using TETRA™’s framework to expand the concept of
technical debt brings benefits to developers and all stakeholders.
By understanding the total technical debt, the following can be
achieved:

• Managers are able to observe whether project management is
effective. They can identify bottlenecks that are currently

http://www.astesj.com/

B. Kontsevoi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 303-309 (2021)

www.astesj.com 307

hindering the project’s development or could become a
problem in the future.

• Designers and developers get an unbiased third-party report
on project coherence and code quality.

• Investors who are presented with the TETRA™ evaluation
can use it as an additional quantifiable justification for
product investment.

• Product owners can use TETRA™’s evaluation to assess the
effectiveness of fund allocation to various development
teams. Thus, they can place priorities within product
development areas or decide to conserve until the technical
debt has been removed.

4. Limitations of TETRA™

However, TETRA™ is not a one-size-fits-all solution, nor is
it a miracle. While it is a highly effective evaluation tool, it does
have certain limitations, namely:

• While TETRA™ allows technical debt to be identified, it
does not provide answers on how to minimize said debt.
There will need to be further investigation into the causes of
technical debt, and the management and development team
must change their established practices.

• Because technical debt goes past quantifiable technical
aspects of code quality (e.g., number of vulnerabilities/
defects per code volume), the process cannot be fully
automated and needs subjective, expert assessment.

• In order to minimize technical debt, TETRA™ assessments
will be required on a regular basis.

5. TETRA™ Use Case: E-Learning Platform

One of our EdTech clients wanted to innovate and revamp its
e-learning platform with the goal of adding to its user base and
improving its market value.

The companies target audience consists of students and
graduates who are studying English and trying to improve their
language skills. Most of the platform's users are tech-savvy kids,
teenagers, and young adults who are comfortable with modern
technologies.

To ensure the platform was a good fit for their target audience,
our client needed to measure its current technical capabilities and
business efficiency before introducing new features.

The project contained about 120,000 lines of code and 7 logic
sections/modules. 5 developers and 2 QA developed the platform
for 2+ years. A wide array of tools and technologies were used,
including Spring Boot, Angular, Java, MySQL, Git, Jenkins, and
jQuery.

A profound platform assessment was required, so the client
chose us for our extensive expertise; they requested that we carry
out an unbiased analysis.

To meet the client's needs, we applied the proprietary
TETRA™ approach to their platform, analyzing all eight
components outlined in Section 2. Each stage of the assessment
concluded with a report about the product’s bottlenecks and pain
points. The process took 2 months from start to finish.

Throughout the TETRA™ analysis, we found several areas
that the client was satisfactory in, including their open-source
code use and source code quality. However, there were also
several areas that needed improvement: the platform had a
medium security risk, as well as poor architectural, performance,
and business logic elements.

See results in table the Final TETRA™ report below.

Table 1: The final TETRA™ report

Metric Assessment Result Evaluation
Rank Score Metric

Index
Dimension

Index
General

TETRA™
Quality Index

TETRA™ Eight (8) Dimensions of Quality

С

1. Source Code Quality

B

Unit Test Coverage 0 X < 40 5 E

Critical Violations 44 40 < X < 60 4 D

Duplication 4.30% 4% < X < 5% 2 B

Maintainability index 1.9% 0 < X < 2.1 1 A

Complexity Methods 4.40% 0 < X < 5% 1 A

Blocker Violations 0 X = 0 1 A

2. Usability, UI & Documentation

C Documentation Failed: 9%,
Failed weight: 15%

Failed: 5% < X < 10%
Weight: X < 20 3 C

Found Bugs Trivial: 4,
Minor: 20, Major: 2 Major - Worst priority 3 C

http://www.astesj.com/

B. Kontsevoi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 303-309 (2021)

308

Ease of Use Score: 3 X = 3 3 C

UI Results Failed: 8%,
Failed weight: 10%

Failed: 5% < X < 10%
Weight: X < 20 2 B

3. Security
C Vulnerabilities Trivial: 3,

Medium: 4
Medium - Worst

priority 3 C

4. Performance

C
Finished Virtual Users 10% < 85% 5 E

Customer
Requirements 85% 80% < X < 90% 3 C

Responses 100% X = 100% 1 A

5. Business Logic

C

Project Workflows
Quality 23% X < 25% 5 E

Simplicity 30% 25% < X < 50 % 4 D

Data Safety 67% 50% < X < 75% 3 C

Bussiness Rules and
Policy 57% 50% < X < 75% 3 C

Competitiveness 63% 50% < X < 75% 3 C

Effectiveness 80% 75 % < X < 90% 2 B

6. Architecture Quality

C

Design Patterns 25% X < 30% 5 E

Services 41% 30% < X < 50% 4 D

Security 65% 50% < X < 70% 3 C

Components 59% 50% < X < 70% 3 C

Layers 63% 50% < X < 70% 3 C

Exception handling 85% 70% < X < 90% 2 B

SOLID 98% 95% < X 1 A

7. Data Quality

C
Real-slice (Production)
Data Quality 58 % 50% < X < 60% 4 D

Requirements Data
Quality 96% 95% < X 1 A

8. Open Source Code Use

B

Lib. Without
information 8% 5% < X < 10% 2 B

Updates Required 8% 5% < X < 10% 2 B

Unlicensed software 0% X = 0% 1 A

ª Note. Own development

B. Kontsevoi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 5, 303-309 (2021)

309

6. Results
The final TETRA™ report is illustrated in the Table above,

which demonstrates that the overall platform state was “Medium,”
showing the value “C” of the TETRA™ Index. Simultaneously, a
detailed results interpretation showed that functionality updates
sometimes lead to software crashes.

By carrying out the analysis, we were able to give the client
the bigger picture about their platform; they understood which
areas needed enhancements and were able to avoid crashes
resulting from future updates.

We provided the client with a detailed list of
recommendations, which the client followed. As a result of the
improvements, the platform's user-base grew by 17.3%, and
product redevelopment costs were cut by 22%.

7. Conclusion

TETRA™ isn't just applicable for tech experts – it benefits
everybody who works on a product. Testers and developers alike
receive an unbiased assessment of their work, users get a well-
performing, reliable product, and managers get a better idea of the
product's capacity. Furthermore, the processes used within the
assessment encourages best practices from the team, thus
increasing team proficiency – and thereby the product's quality

TETRA™ gives proper business information to product
owners and investors. Companies can get a fair analysis of their
product and determine whether it's ready to be launched. If the
product already works as intended, the owners can get an estimate
of its market value and efficiency. And regarding investors,
TETRA™ enables them to better define the product's market
value, evaluate the state of the purchasable product, and determine
potential investment risks for a transaction.

Throughout the development of TETRA™, we had the overall
goal of quantitatively evaluating software product conditions and
helping development teams get better results. If you don't use
comprehensive, standardized measurements, it isn't possible to
understand and manage the product's quality. TETRA™
determines whether the needs of the investors, market,
development teams, product owners, and users have been met. It
allows you to efficiently take control of your project.

Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
Intetics vision of the outsourcing and custom software
development industry involves heightened innovation brought to
life through Intetics’ TETRA™ platform, as well as our
proprietary Remote In-Sourcing® and Offshore Dedicated Team®
models. Intetics is more than just software development; we aim to
make an impact by sharing best practices with the global IT
community and for different industries. The research was
performed under the leadership of Boris Kontsevoi, President &
CEO, and Sergei Terekhov, Director of Quality Assurance, based
on the unique developed methodology for assessing technical debt.

References
[1] G. A. Campbell, P. P. Papapetrou, and O. Gaudin, “SonarQube in Action,” 1st

Edition, Manning Publications, 392, 2013, ISBN-13: 9781617290954.

[2] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes and R. O. Spínola,
"Towards an Ontology of Terms on Technical Debt," 2014 Sixth International
Workshop on Managing Technical Debt, 1-7, 2014, doi:
10.1109/MTD.2014.9.

[3] P. Ciancarini, D. Russo, “The strategic technical debt management model: an
empirical proposal,” In: V. Ivanov, A. Kruglov, S. Masyagin, A. Sillitti, G.
Succi (eds) Open Source Systems, OSS 2020, IFIP Advances in Information
and Communication Technology, 582, Springer, Cham, 131-140, 2020, doi:
10.1007/978-3-030-47240-5_13.

[4] J. Yli-Huumo, A. Maglyas, K. Smolander, “How do software development
teams manage technical debt? – An empirical study,” The Journal of Systems
and Software 120, 195-218, 2016, doi: 10.1016/j.jss.2016.05.018.

[5] A. Peixoto de Queirós, R. and A. Simões, and M. T. Pinto, “Code Generation,
Analysis Tools, and Testing for Quality. Hershey,” PA: IGI Global, 288,
2019. doi: 10.4018/978-1-5225-7455-2.

[6] ISO/IEC 25063:2014, “Systems and software engineering — systems and
software product quality requirements and evaluation (SQuaRE) — common
industry format (CIF) for usability,” 1st Edition, ISO/TC 159/SC 4
Ergonomics of human-system interaction, 33, 2014.

[7] OWASP, “OWASP top 10 – 2017. The Ten Most Critical Web Application
Security Risks,” OWASP Foundation, 25, 2017.

[8] CISQ, “List of Weaknesses Included in the CISQ Automated Source Code
Quality Measures,” CISQ, 31, 2019.

[9] ISO/IEC 5055:2021, “Information technology — Software measurement —
Software quality measurement — Automated source code quality measures,”
1st Edition, ISO/IEC JTC 1 Information technology, 235, 2021.

[10] Microsoft Patterns & Practices Team , “Microsoft Application Architecture
Guide,” 2nd edition, Microsoft Press, 560, 2009, ISBN-13: 978-0735627109.

[11] P. C. Clements, R. Kazman, M. Klein, “Evaluating Software Architectures:
Methods and Case Studies,” 1st edition, Addison-Wesley Professional, 323,
2002. ISBN: 0-201-70482-X.

https://doi.org/10.1109/MTD.2014.9
https://doi.org/10.1109/MTD.2014.9
https://doi.org/10.1007/978-3-030-47240-5_13
https://doi.org/10.1007/978-3-030-47240-5_13
https://doi.org/10.1016/J.JSS.2016.05.018
http://doi:10.4018/978-1-5225-7455-2

	1. Introduction
	2. TETRA™ Dimensions
	2.1 Dimension 1
	2.2 Dimension 2
	2.3 Dimension 3
	2.4 Dimension 4
	2.5 Dimension 5
	2.6 Dimension 6
	2.7 Dimension 7
	2.8 Dimension 8

	3. Advantages of TETRA™
	4. Limitations of TETRA™
	5. TETRA™ Use Case: E-Learning Platform
	6. Results
	7. Conclusion
	Acknowledgment
	References

